
Developing a
research pipeline

Esther Jones

Biomathematics & Statistics Scotland

Open Science

https://www.jisc.ac.uk/guides/an-introduction-to-open-access

Open science is a movement to encourage
the free exchange of knowledge and
resources to wide access

It aims to make research more transparent,
accessible, and collaborative.

Sharing research data, methods, and
results openly and freely with the scientific
community and the public

Open access

Requirement for published articles from funders

Green (self-archiving after embargo) or gold (immediate
access - APC)

Pre-print servers

Data are often required to be published with a DOI

Data analysis code and software tools may be required
to be shared

Open access

Requirement for published articles from funders

Green (self-archiving after embargo) or gold (immediate
access - APC)

Pre-print servers

Data are often required to be published with a DOI

Data analysis code and software tools may be required
to be shared

What’s a research analysis pipeline?

• A systematic and structured approach to undertaking and recording the
analytical components of research

• Can include importing data, cleaning & exploratory analysis, modelling, results,
outputs, tools, reports, and manuscripts

• Can be extended to collecting, storing, and archiving data

• Using existing frameworks or developing a pipeline can make open access
requirements easier to achieve, and promotes open science goals

Why develop a research pipeline?

Efficiency Reproducibility Transparency

Collaboration Automation Scalability

FAIR data pipeline

• Findable, Interoperable and Reusable
(FAIR) (www.fairdatapipeline.org)

• Allows data to be tracked and used in
epidemiological modelling

• APIs are written in C++, Java, Julia,
Python, and R and can be called to
incorporate data into modelling

• Relational database with metadata &
local filesystem downloading/uploading
to remote registry and data store

https://doi.org/10.1098/rsta.2021.0300

http://www.fairdatapipeline.org/
https://doi.org/10.1098/rsta.2021.0300

Case study:
developing an
analysis pipeline

Offshore Renewables Group

Short term industry funded projects → long
term UKRI research

…but they usually have similar components
• Data

• Exploratory analysis

• Modelling

• Outputs

• Software tool development

• Report/article

• Collaboration between many organisations

10

£5M collaborative project (+ in-kind)

Contemporaneous data on fish, seabirds
and marine mammals in the Forth-Tay &
Moray Firth in 2022-24

BioSS is leading the seabird-prey modelling to investigate how

predator-prey relationships are impacted by offshore renewable

developments

Evaluate the extent to which relationships in the Forth-Tay are

transferrable to other regions

Provides insights into cumulative effects from

large scale development for key species

Data catalogue

• Large amounts of data from multiple sources over large spatial and
temporal scales

• Used by multiple teams/organisations

• Useful for data permissions/agreements and sharing

ORJIP Apportioning

• £100K collaborative project led by UKCEH
with BioSS, BTO & MacArthur Green

• Part of project is apportioning of seabirds
at-sea in the non-breeding season

• Seabirds are central placed foragers
during breeding (summer) but are less
constrained in winter

• Developing software tool for apportioning

Writing functions

• When writing code, use functions as much as possible

• It helps make code readable (to other people and future
self)

• Functions can often be reused so not reinventing the
wheel each time

• Can follow a naming convention to help find functions
that may be useful

• Import all functions at once (in R setup)
files.sources = list.files(pattern="fn.")

sapply(files.sources, source)

Documenting functions

• When writing a function, it’s useful to explain what it
does, input parameters, outputs, and dependencies

• roxygen2 library https://cran.r-
project.org/web/packages/roxygen2/vignettes/roxygen2.
html

• Standardises documentation

• Can use it to help build a package as it manages
NAMESPACE and some of the DESCRIPTION file

• You can add roxygen text to R code manually;

• or automatically using roxygen2::roxygenise() to
convert roxygen comments to .Rd files

https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html

https://roxygen2.r-lib.org/articles/rd.html

Use tags with @ at beginning of the line

title

Description of

function

Name &

description of

input parameters

Description of

output(s)

Use in package

https://roxygen2.r-lib.org/articles/rd.html

Testing code

Code is often tested informally or on an ad hoc basis
• The outputs looks ‘about right’

• Trying different inputs and getting what you expect

• Testing individual functions

However, these tests can get lost and may not have consistency.

Two useful types of testing – error handling and unit testing

Error handling

• Adding expressions into functions to try and catch common errors

• Can generate informative warning or error messages back to the user

Error handling

Unit testing

• A structured and automatic way of testing code, from a single function
up to an entire R package

• Single tests are written to test one aspect of functionality and then run
separately or all together

• Stored and run automatically so if you reorganise or restructure your
code, tests will still run

• Makes you think about how you write code and gives confidence that
you’ve caught the majority of errors if/when you need to share code –
open science

Unit testing

• Guide to testing – ‘R packages’ – Hadley Wickham & Jenny Bryan
https://r-pkgs.org/testing-basics.html

• Use a package called ‘testthat’ https://testthat.r-lib.org

• Can use the package ‘usethis’ to help you automatically set up
testing https://usethis.r-lib.org/

• You can set up tests/test structure manually or let usethis do it
automatically

• At a minimum, set up a directory called tests/testthat/

https://r-pkgs.org/testing-basics.html
https://testthat.r-lib.org/
https://usethis.r-lib.org/

Example of organising a project

Project

Data

Results

Manuscripts

TextFigures

R code

Shellscripts
(for running in batch mode)

Tests Analysis

Example of organising a project

Project

Data

Results

Manuscripts

TextFigures

R code

Shellscripts
(for running in batch mode)

Tests Analysis

function1.R

function2.R

function3.R

Example of organising a project

Project

Data

Results

Manuscripts

TextFigures

R code

Shellscripts
(for running in batch mode)

Tests Analysis

testfunction1.R

testfunction2.R

testfunction3.R

Testthat

function1.R

function2.R

function3.R

Writing tests

• Keep tests simple - one clause
per test

• Write informative descriptions

• You can write as many or as few
tests as you want

testthat function Description of test

Test expectation Criteria

Test output

(pass/fail/error)

Examples of expectations
https://testthat.r-lib.org/reference/index.html#expectations

Objects

expect_equal() expect_identical() does the code return the expected value?

expect_type() expect_s3_class() expect_s4_class() does the code return an object inheriting from the expected base type, s3

class, or s4 class?

Vectors

expect_length() does code return a vector with the specified length?

expect_lt() expect_lte() expect_gt() expect_gte() does code return a number greater/lesser/equal to expected value?

expect_named() does the code return a vector with (given) names?

expect_setequal() expect_mapequal() does code return a vector containing the expected values?

expect_true() expect_false() does the code return true or false?

expect_vector() does code return a vector with the expected size?

Side-effects

expect_error() expect_warning()

expect_message() expect_condition()

does code throw an error, warning, message, or other condition?

https://testthat.r-lib.org/reference/index.html#expectations

Functions for running tests

Can run single tests → whole package

https://testthat.r-lib.org/reference/index.html#run-tests

Run tests

auto_test() Watches code and tests for changes, rerunning tests as

appropriate

auto_test_package() Watches a packages for changes, rerunning tests as appropriate

test_file() Runs all tests in a single file

test_package() test check() test_local() Runs all tests in a package

test_path() Locate file in testing directory

test_that() Run a (single) test

https://testthat.r-lib.org/reference/index.html#run-tests

Dissemination

• Packaging up into an R library – helpful blog
https://godatadriven.com/blog/developing-r-packages-and-data-applications/

• Github

https://godatadriven.com/blog/developing-r-packages-and-data-applications/

Summary

• Developing or using an existing framework for an analysis
pipeline is generally a useful thing to do

• Pipelines can be extensive or you can choose to
optimise/focus on one or a few elements (e.g. code testing)

• They are scalable, reusable, and adaptable

• Can really help to achieve open access and open science
goals and requirements

• Structured way to develop learning and ‘best practice’
across an organisation/team

Acknowledgements

• Lee Benson

• Adam Butler

• Sonia Mitchell

• Helen Kettle

• Deena Mobbs (UKCEH)

	Slide 1: Developing a research pipeline
	Slide 2: Open Science
	Slide 3: Open access
	Slide 4: Open access
	Slide 5: What’s a research analysis pipeline?
	Slide 6: Why develop a research pipeline?
	Slide 7: FAIR data pipeline
	Slide 8: Case study: developing an analysis pipeline
	Slide 9: Offshore Renewables Group
	Slide 10
	Slide 11: Data catalogue
	Slide 12
	Slide 13: ORJIP Apportioning
	Slide 14: Writing functions
	Slide 15: Documenting functions
	Slide 16
	Slide 17: Testing code
	Slide 18: Error handling
	Slide 19: Error handling
	Slide 20: Unit testing
	Slide 21: Unit testing
	Slide 22: Example of organising a project
	Slide 23: Example of organising a project
	Slide 24: Example of organising a project
	Slide 25: Writing tests
	Slide 26: Examples of expectations
	Slide 27: Functions for running tests
	Slide 28: Dissemination
	Slide 29: Summary
	Slide 30: Acknowledgements

