A

BioSS

Developing a
research pipeline

Esther Jones
Biomathematics & Statistics Scotland ¥

| Ane
Open Science BioSS
U

Open science is a movement to encourage ? boreexpomrs o %
the free exchange of knowledge and 9 “

resources to wide access e g P

1221
:::::

't aims to make research more transparent,
accessible, and collaborative.

for money

Higher citation rates

Sharing research data, methods, and

— |

. L ~ AT A
results openly and freely with the scientific 3 > <
community and the public e R T

The public can access
3 your findings

CC-BY Danny Kingsley & Sarah Brown

https://www jisc.ac.uk/guides/an-introduction-to-open-access

Open access

Requirement for published articles from funders

Green (self-archiving after embargo) or gold (immediate e .
access - APC) blORX lV

Pre-print servers

‘ DRYAD

Data are often required to be published with a DO
4+ figshare

Data analysis code and software tools may be required O
to be shared .
GitHub

Open access BioSS

Py
Requirement for published articles from funders = \lv

Green (self-archiving after embargo) or gold (immediate e .
access - APC) blORX lV

Pre-print servers

A

What's a research analysis pipeline? BioSS

* A systematic and structured approach to undertaking and recording the
analytical components of research

 Can include importing data, cleaning & exploratory analysis, modelling, results,
outputs, tools, reports, and manuscripts

« Can be extended to collecting, storing, and archiving data

« Using existing frameworks or developing a pipeline can make open access
requirements easier to achieve, and promotes open science goals

[\N

Why develop a research pipeline? BioSS

Efficiency v/ Reproducibility Q Transparency

@2% Collaboration 4 Automation & Scalability

FAIR data pipeline

* Findable, Interoperable and Reusable

(FAIR) (www.fairdatapipeline.org) e { %
* Allows data to be tracked and used in || ,, T | 7
epidemiological modelling ‘ I R R
2orpt tyaml) I
* APIs are written in C++, Java, Julia, - |ia=
Python, and R and can be called to a ﬂ Mo fa o .
incorporate data into modelling =YY
) . data and metadata flow registry Mealidy
* Relational database with metadata & faiepull — download to local registry component
—_— =D — register source data in local pipeline provided by user
local filesystem downloading/uploading ————» s —exceucaduapipsiienn T FAIR dat pipeinerSCRC
to remote registry and data store S 21 firpush —upload owputs to remore registry | Eencrated by pipcline

https://doi.org/10.1098/rsta.2021.0300

http://www.fairdatapipeline.org/
https://doi.org/10.1098/rsta.2021.0300

Case study:
developing an
analysis pipeline

A

Bioss Offshore Renewables Group

Short term industry funded projects = long
term UKRI research

..but they usually have similar components
* Data
* Exploratory analysis
» Modelling
» Outputs
« Software tool development
 Report/article
* Collaboration between many organisations

H Sea Mammal e UNIVERSITY OF
SMRU Consulting @ Recearch th]\:iazg&?& W}ER p
understand ¢ assess ¢+ mitigate d Unit AARHUS UNIVERSITY

PrePARED

Predators + Prey Around Renewable Energy Developments

e
-~ Crown Estate a\)) Wind Evidence
(\ +Change

Scotland
Oighreachd a’ Chriiin Alb

UK Centre for i\[‘f
Ecology & Hydrology s BALAKLS

NatureScot
F Programme

£ 5M collaborative project (+ in-kind)

®F aifar

Porh@)— ‘@Dundee M‘/Jd

Contemporaneous data on fish, seabirds 9, :
and marine mammals in the Forth-Tay & |

Moray Firth in 2022-24 b o |
Provides insights in mulative effects from v

ovides insights into cumulative e ects fro o
large scale development for key species \>

BioSS is leading the seabird-prey modelling to investigate how

predator-prey relationships are impacted by offshore renewable
developments

Evaluate the extent to which relationships in the Forth-Tay are
transferrable to other regions 10

Data catalogue

* Large amounts of data from multiple sources over large spatial and

temporal scales

 Used by multiple teams/organisations

* Useful for data permissions/agreements and sharing

- ; Bosundarias:
atal suspende =2.7145 «1,48852
solitls (T55) [azT 5648183 5567755

Fartiche Slze %rﬂa‘;:ﬁi
Anakysis (P54 M SEAEIED SOGTTEE

Wimainprapared_prajectData\Data_oniginal SS52H1 1 Zore 2 FoF Fugro

Offshare Metocean SurveyiDatasetsthol 1 Fugro GEOS Lid ZF FoF N 5ea
Offshare Matace an Surveyh DaEtasets a2 ve

Hiumaintprepared_project DatatData_ceiginal\S5E\201 2 Zanse 2 FaF
1ECS Horth Sea Offshore Benthic Surveys\Reportst2012 ECS N Sea

‘Oftshare Banthic Surveys

BioSS

Erreirgrrmantal date
— — — — —
— — — — —
—_—
- = o N ey
— m = e m— —
- " | 1 e prz
—_— e — — —
wr B Semc [ookl et

— o m— —_—

| m—

(‘ 6f A

UK Centre for I\/\/‘ ! ’ /\J_LD

6 Ecology & Hydrology ‘ Loskingoutfor b MaCATth ur e t‘- CARBO N
offshore consenting

BioSS Green TRUST

ORJIP Apportioning

L
» £100K collaborative project led by UKCEH
with BioSS, BTO & MacArthur Green &

* Part of project is apportioning of seabirds
at-sea in the non-breeding season |

* Seabirds are central placed foragers
during breeding (summer) but are less

constrained in winter , ‘
* Developing software tool for apportioning o

Writing functions

 Import all functions at once (in R setup)
list.files (pattern="fn.")

When writing code, use functions as much as possible
't helps make code readable (to other people and future

self)

Functions can often be reused so not reinventing the

wheel each time

Can follow a naming convention to help find functions
that may be useful

files.sources
sapply(files.sources,

source)

fn.process.bdmpspopsizes
fn.process.bdmpsspatdist
fn.process.distancefremcolony
fn.process.fix.punctuation
fn.process.makerasterstack
fn.process.spacode.find
fn.process.spacode.get
fn.process.spalist
fn.process.spanames.adjname
fn.process.spanames.fix
fn.process.spanames.fidformat
fn.process.transformcoordinates
fn.process.which.adjname
fn.read.bdmpsimprat
fn.read.bdmpspopsizes
fn.read.bdmpsspatdist
fn.read.csvfile

fn.read.rds

fn.read.shpfiles
fn.read.spacoords
fn.read.spalist

fn.read.uds

BioSS

Documenting functions

« When writing a function, it's useful to explain what it
does, input parameters, outputs, and dependencies

* roxygen? library https://cran.r-
project.org/web/packages/roxygenZ/vignettes/roxygen?.

htm!|
» Standardises documentation

 Can use it to help build a package as it manages
NAMESPACE and some of the DESCRIPTION file

 You can add roxygen text to R code manually;

 or automatically using roxygen2: : roxygenise () tO
convert roxygen comments to .Rd files

https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html

https://roxygen?.r-lib.org/articles/rd.html
Use tags with @ at beginning of the line

title

Description of I, ree=iid
P #
@Bdescription Generic function to load csv files

function e

#' @param dspathn Full path to the data holding the dataset.
#' @param verpathn Folder name for the required version

@param dname Stub name for the dataset (expects to find dname.csv and fields_dname. csv)

& e e
Name & #" @return dataframe with column names <

#l

deSCl’iptiOﬂ of #' @export <
input parameters

read_csvfile <=- function(dspathn, wverpathn, dname){

result =- trycatch(
f =- read.csv(pasted(dspathn, "/",verpathn, "/",dname,".csv"))
T, warning = function(w) {wimessage <- pastel("warning: ",wimessage, " (read_csvfile)™)

T, error = function(e) {eimessage =- pasteld("error: ",eimessage, " (read_csvfile)")})

return{result)

[

BioSS

Description of
output(s)

Use in package

https://roxygen2.r-lib.org/articles/rd.html

Testing code BioSS

Code is often tested informally or on an ad hoc basis
* The outputs looks ‘about right’

* Trying different inputs and getting what you expect
* Testing individual functions

However, these tests can get lost and may not have consistency.
Two useful types of testing — error handling and unit testing

Error handling

« Adding expressions into functions to try and catch common errors
 Can generate informative warning or error messages back to the user

dist.to.colony <- function{costgrid, fromCoordsl, fromCoords2, toCoordsl, toCoords2, fromwWames=NULL, toMames=NULL){

result =4 trycatch({

colonydat <=- as.matrix(cbind(fromCoordsl, fromCoords2))
spatdat =- as.matrix{cbind(toCoordsl, toCoords2))

T =- gdistance::costDhistance(x = costgrid, fromCoords = colonydat, toCoords = spatdat)

if('is.null (fromNames)) {colnames (f) <- fromMames]
if('is.null({toNames)){rownames(f) =- toMames]}
f = f

T, warnming = function{w) {wimessage <- pastel("projection transform warning:

",wimessage, " (dist.to.colony)™)
T, error = function(e) {eimessage <- pasteld("projection transform error:

',eimessage, " (dist.to.colony)")})

return{result)

Error handling

spacode. get «<- function(spanames, spalist, Tixna){
wl <- which(spanames != "")
spathis <- spanames[wl]

mm <- match(spathis, spalistTiSITE_NAME)

if{any(is. na(mmljj¥
waln1ng(c(—————

W2 <- ! dis.na(mm)

mm <- mm[w2]

out <- rep("", length(spanames))
if(fixna){

out[wl[' w2]] <- Na
} r
else]

out[wll[! w2]] =- ™"
i

out [wl[w2]] <- spalistiSITE_CODE [mm]

paste("not all apparent SPA names in data file match to an sPA code! SPA names that do not match are
paste(unique(spathis[is.na(mm)]

"

"oy " [LRY

), collapse=" 3y, T)

BioSS

Unit testing

* A structured and automatic way of testing code, from a single function
up to an entire R package

* Single tests are written to test one aspect of functionality and then run
separately or all together

« Stored and run automatically so if you reorganise or restructure your
code, tests will still run

« Makes you think about how you write code and gives confidence that
you've caught the majority of errors if/when you need to share code —
open science

BioSS

Unit testing

 Guide to testing — 'R packages’ — Hadley Wickham & Jenny Bryan
https://r-pkgs.org/testing-basics.html

 Use a package called "testthat’ https://testthat.r-lib.org

 Can use the package ‘usethis’ to help you automatically set up
testing https://usethis.r-lib.org/

* You can set up tests/test structure manually or let usethis do it
automatically

« At a minimum, set up a directory called tests/testthat/

https://r-pkgs.org/testing-basics.html
https://testthat.r-lib.org/
https://usethis.r-lib.org/

Example of organising a project BioSS
Project
R code Dat3 Manuscripts

Tests Shellscripts Analysis

(for running in batch mode)

Figures Text

Results

Example of organising a project

Tests

R code

Analysis

function1.R
function2.R
function3.R

BioSS

Example of organising a project BioSS
R code
Tests Analysis
Testthat
testfunctionl.R functionl.R
function2.R

testfunction2.R

testfunction3.R function3.R

BioSS

ertl n g teStS testthat function Description of test

test that({"there are no MNAs in AdjustedCount",{
expect equal(sum{is.na(testdatfAdjustedCount)),@)
1)

 Keep tests simple - one clause

per test Test expectation Criteria

« Write informative descriptions

* You can write as many or as few Test passed @ Test output
tests as you want (pass/fail/error)

test that("there is at least one TRUE wvalue in the string”,{
expect pgte(sum(ws),1)
)

Unknown or uninitialised column: “Season’ .Unknown or uninitialised column: “Area” .— {Line 2): there is at least

one TRUE value in the string
sum{ws) is not more than 1. Difference: -1

Examples of expectations BioSS

https://testthat.r-lib.org/reference/index.html#expectations

Objects
expect_equal() expect_identical() does the code return the expected value?

expect_type() expect_s3_class() expect_s4_class() does the code return an object inheriting from the expected base type, s3
class, or s4 class?

Vectors
expect_length() does code return a vector with the specified length?

expect_lt() expect_lte() expect_gt() expect_gte() does code return a number greater/lesser/equal to expected value?

expect_named() does the code return a vector with (given) names?
expect_setequal() expect_mapequal() does code return a vector containing the expected values?
expect_true() expect_false() does the code return true or false?

expect_vector() does code return a vector with the expected size?

Side-effects

expect_error() expect_warning() does code throw an error, warning, message, or other condition?

expect_message() expect_condition()

https://testthat.r-lib.org/reference/index.html#expectations

Functions for running tests BioSS

Can run single tests = whole package
https://testthat.r-lib.org/reference/index.ntml#run-tests

Run tests

auto_test() Watches code and tests for changes, rerunning tests as
appropriate

auto_test_package() Watches a packages for changes, rerunning tests as appropriate

test_file() Runs all tests in a single file

test_package() test check() test_local() Runs all tests in a package

test_path() Locate file in testing directory

test_that() Run a (single) test

https://testthat.r-lib.org/reference/index.html#run-tests

Dissemination BioSS

 Packaging up into an R library — helpful blog
https://godatadriven.com/blog/developing-r-packages-and-data-applications/

e Github

main v prepared_seabirds / | + v Find file Web IDE by v

Name Last commit Last update
Eacode add priority rankings for nng and sse data 3 weeks ago
Eadata update gitgnore to better accommodate ... 6 months ago
Eadoc save guides for r package trackZkba 4 months ago
Earesults create initial file structure 6 months ago
¢ .gitignore update gitgnore to better accommodate ... 6 months ago

“+ README.md updated readme with links to git help 6 months ago

https://godatadriven.com/blog/developing-r-packages-and-data-applications/

Summary

 Developing or using an existing framework for an analysis
pipeline is generally a useful thing to do

* Pipelines can be extensive or you can choose to
optimise/focus on one or a few elements (e.q. code testing)

* They are scalable, reusable, and adaptable

 Can really help to achieve open access and open science
goals and requirements

« Structured way to develop learning and ‘best practice’
across an organisation/team

REDUCE _
RECYCLE | oo

Acknowledgements BioSS

e Lee Benson

« Adam Butler
» Sonia Mitchell
» Helen Kettle
* Deena Mobbs (UKCEH)

	Slide 1: Developing a research pipeline
	Slide 2: Open Science
	Slide 3: Open access
	Slide 4: Open access
	Slide 5: What’s a research analysis pipeline?
	Slide 6: Why develop a research pipeline?
	Slide 7: FAIR data pipeline
	Slide 8: Case study: developing an analysis pipeline
	Slide 9: Offshore Renewables Group
	Slide 10
	Slide 11: Data catalogue
	Slide 12
	Slide 13: ORJIP Apportioning
	Slide 14: Writing functions
	Slide 15: Documenting functions
	Slide 16
	Slide 17: Testing code
	Slide 18: Error handling
	Slide 19: Error handling
	Slide 20: Unit testing
	Slide 21: Unit testing
	Slide 22: Example of organising a project
	Slide 23: Example of organising a project
	Slide 24: Example of organising a project
	Slide 25: Writing tests
	Slide 26: Examples of expectations
	Slide 27: Functions for running tests
	Slide 28: Dissemination
	Slide 29: Summary
	Slide 30: Acknowledgements

