Testing Testing!

Obviously we all test our code © but can we do it more efficiently?
This talk is a brief introduction (I'm no expert!) on how to write
formal, automated tests.

Helen Kettle
Mathmo Meeting sept 2021

Testing...

* We all know why we need to test our code — especially for
mathematical models which may be 1000s of lines of code

* How do we go about this?

* The results look “about right”
* Two wrongs can make a right!

* Compare with data
* this tests the whole thing but not the individual parts
 Some data sets will not trigger various parts of a model

 We often test a function when we write it but these tests are informal and
easily lost

Unit tests — what?!

These can test one function at a time in a very simple way

A unit test tests the expected output from a function, i.e. we expect certain inputs to give a
certain answers.

Example (paired down!)
f(x) = function(x){2*x}
expect_equal(f(3),6)
expect_true(f(1)>1)
expect_length(f(1),1)
expect gt(length(f(c(1,2,3))),1)

expect_error(f(‘x’))

Unit tests —why?

* Unit tests are stored formally and run in automated way — this stops you endlessly
repeating stuff you’ve already done

* They can all be run at once or separately

* They can be tested for extremes i.e. when the inputs are not what you expect them to
be — writing unit tests can be combined with adding error-catching to your code

* If we come to add a feature or reorganise/restructure (i.e. refactor) our code we can
run our unit tests and be safe in the knowledge we haven’t broken it all!

* Writing tests often helps you to massively improve your code as it forces you to break
your code down into testable chunks.

* When you come to share your code (hello, Open Science!) you can feel more confident
about it!

Unit tests — how?

| will focus on unit testing in R but the principles will apply to other languages

Resource: https://r-pkgs.org/tests.html

In R there is a library called testthat — install.packages(‘testthat’)
This allows you to write and run your unit tests

| think creating the folders etc can all be automated (use package called
“usethis”) but | do it by hand as I’'m a control freak

- you need a folder called ‘tests’ and within that a folder called ‘testthat’
and then you put in any number of files which contain any number of unit tests.

https://r-pkgs.org/tests.html

Organising

Projectl

Code //

/N

R tests

l (for running in batch mode) (:;jgaxs:gi{)plouing
. testthat

main.R

setOfFunctions1.R l

setOfFunctions2.R testFunctions1.R

setOfFunctions3.R testFunctions2.R

setOfFunctions4.R testFunctions3.R

testFunctions4.R

testFunctions1.R

library(testthat) You can then simply run this script
source("../../R/setOfFunctions1.R’) i e

X=1

Y=2 setwd(‘testthat’)

test_that(‘functionl’,{
expect_equal(f1(X,Y),-2)
expect_length(f1(X,Y),1)

source(‘testFunctions1.R’)

)
723 When you run the tests you get a
test_that(‘function2’{ message and the details for any

expect_equal(f1(X,Y,Z),6) failed tests
expect_true(f1(X,Y,Z)>0)

1)

Examples of expectations you can test

https://testthat.r-lib.org/reference/index.html

Objects

expect _equal() expect identical()

expect type() expect s3 class() expect s4 class()
Vectors

expect length()

expect It() expect Ite() expect gt() expect gte()
expect named()

expect setequal() expect mapequall()

expect true() expect false()

expect vector()

Side-effects

expect

error() expect warning() expect message()

expect

condition()

Does code return the expected value?

Does code return an object inheriting from the expected base
type, S3 class, or S4 class?

Does code return a vector with the specified length?

Does code return a number greater/less than the expected
value?

Does code return a vector with (given) names?
Does code return a vector containing the expected values?

Does code return TRUE or FALSE?

Does code return a vector with the expected size and/or
prototype?

https://testthat.r-lib.org/reference/equality-expectations.html
https://testthat.r-lib.org/reference/equality-expectations.html
https://testthat.r-lib.org/reference/inheritance-expectations.html
https://testthat.r-lib.org/reference/inheritance-expectations.html
https://testthat.r-lib.org/reference/inheritance-expectations.html
https://testthat.r-lib.org/reference/expect_length.html
https://testthat.r-lib.org/reference/comparison-expectations.html
https://testthat.r-lib.org/reference/comparison-expectations.html
https://testthat.r-lib.org/reference/comparison-expectations.html
https://testthat.r-lib.org/reference/comparison-expectations.html
https://testthat.r-lib.org/reference/expect_named.html
https://testthat.r-lib.org/reference/expect_setequal.html
https://testthat.r-lib.org/reference/expect_setequal.html
https://testthat.r-lib.org/reference/logical-expectations.html
https://testthat.r-lib.org/reference/logical-expectations.html
https://testthat.r-lib.org/reference/expect_vector.html
https://testthat.r-lib.org/reference/expect_error.html
https://testthat.r-lib.org/reference/expect_error.html
https://testthat.r-lib.org/reference/expect_error.html
https://testthat.r-lib.org/reference/expect_error.html

Functions for running tests

Run tests

auto test()

auto test packagel()

describe()

test file()

test package() test check() test local()

test path()
test that()

use catch()

Watches code and tests for changes, rerunning tests
as appropriate.

Watches a package for changes, rerunning tests as
appropriate.

describe: a BDD testing language
Run all tests in a single file

Run all tests in a package

Locate file in testing directory.
Run a test

Use Catch for C++ Unit Testing

https://testthat.r-lib.org/reference/auto_test.html
https://testthat.r-lib.org/reference/auto_test_package.html
https://testthat.r-lib.org/reference/describe.html
https://testthat.r-lib.org/reference/test_file.html
https://testthat.r-lib.org/reference/test_package.html
https://testthat.r-lib.org/reference/test_package.html
https://testthat.r-lib.org/reference/test_package.html
https://testthat.r-lib.org/reference/test_path.html
https://testthat.r-lib.org/reference/test_that.html
https://testthat.r-lib.org/reference/use_catch.html

Summary

You don’t need to be building an R package to formally test your code
You can write as many or as few tests as you like
You can run them whenever you like

You can automate all this using testthat, devtools, usethis
* This will make it easier than | have shown but it’s good to understand the fundamentals | think! ©
* | often make plots in my test files too but would comment these out for packaging

There are a lot of online resources — google: ‘unit tests R’, ‘testthat’, ‘creating packages in R’ etc.
Caveat — | am not an expert (just a self-taught hacker!) — ask David and Bram for better info!

Happy testing!

