
Testing Testing!

Obviously we all test our code  but can we do it more efficiently?
This talk is a brief introduction (I’m no expert!) on how to write

formal, automated tests.

Helen Kettle

Mathmo Meeting sept 2021

Testing…

• We all know why we need to test our code – especially for
mathematical models which may be 1000s of lines of code

• How do we go about this?
• The results look “about right”

• Two wrongs can make a right!

• Compare with data
• this tests the whole thing but not the individual parts

• Some data sets will not trigger various parts of a model

• We often test a function when we write it but these tests are informal and
easily lost

Unit tests – what?!
These can test one function at a time in a very simple way

A unit test tests the expected output from a function, i.e. we expect certain inputs to give a
certain answers.

Example (paired down!)

f(x) = function(x){2*x}

expect_equal(f(3),6)

expect_true(f(1)>1)

expect_length(f(1),1)

expect_gt(length(f(c(1,2,3))),1)

expect_error(f(‘x’))

Unit tests – why?
• Unit tests are stored formally and run in automated way – this stops you endlessly

repeating stuff you’ve already done

• They can all be run at once or separately

• They can be tested for extremes i.e. when the inputs are not what you expect them to
be – writing unit tests can be combined with adding error-catching to your code

• If we come to add a feature or reorganise/restructure (i.e. refactor) our code we can
run our unit tests and be safe in the knowledge we haven’t broken it all!

• Writing tests often helps you to massively improve your code as it forces you to break
your code down into testable chunks.

• When you come to share your code (hello, Open Science!) you can feel more confident
about it!

Unit tests – how?

• I will focus on unit testing in R but the principles will apply to other languages

• Resource: https://r-pkgs.org/tests.html

• In R there is a library called testthat – install.packages(‘testthat’)

• This allows you to write and run your unit tests

• I think creating the folders etc can all be automated (use package called
“usethis”) but I do it by hand as I’m a control freak

- you need a folder called ‘tests’ and within that a folder called ‘testthat’
and then you put in any number of files which contain any number of unit tests.

https://r-pkgs.org/tests.html

Organising

Project1

Code Data Results Papers

R Shellscripts tests Analysis Text Figures

main.R
setOfFunctions1.R
setOfFunctions2.R
setOfFunctions3.R
setOfFunctions4.R

(for running in batch mode)
(for analysing/plotting
model output)

testthat

testFunctions1.R
testFunctions2.R
testFunctions3.R
testFunctions4.R

testFunctions1.R

library(testthat)
source(‘../../R/setOfFunctions1.R’)

X=1
Y=2
test_that(‘function1’,{

expect_equal(f1(X,Y),-2)
expect_length(f1(X,Y),1)

})

Z=3
test_that(‘function2’,{

expect_equal(f1(X,Y,Z),6)
expect_true(f1(X,Y,Z)>0)

})

You can then simply run this script
i.e.

setwd(‘testthat’)
source(‘testFunctions1.R’)

When you run the tests you get a
message and the details for any
failed tests

Examples of expectations you can test

https://testthat.r-lib.org/reference/index.html

Objects

expect_equal() expect_identical() Does code return the expected value?

expect_type() expect_s3_class() expect_s4_class()
Does code return an object inheriting from the expected base
type, S3 class, or S4 class?

Vectors

expect_length() Does code return a vector with the specified length?

expect_lt() expect_lte() expect_gt() expect_gte()
Does code return a number greater/less than the expected
value?

expect_named() Does code return a vector with (given) names?

expect_setequal() expect_mapequal() Does code return a vector containing the expected values?

expect_true() expect_false() Does code return TRUE or FALSE?

expect_vector()
Does code return a vector with the expected size and/or
prototype?

Side-effects

expect_error() expect_warning() expect_message()
expect_condition()

https://testthat.r-lib.org/reference/equality-expectations.html
https://testthat.r-lib.org/reference/equality-expectations.html
https://testthat.r-lib.org/reference/inheritance-expectations.html
https://testthat.r-lib.org/reference/inheritance-expectations.html
https://testthat.r-lib.org/reference/inheritance-expectations.html
https://testthat.r-lib.org/reference/expect_length.html
https://testthat.r-lib.org/reference/comparison-expectations.html
https://testthat.r-lib.org/reference/comparison-expectations.html
https://testthat.r-lib.org/reference/comparison-expectations.html
https://testthat.r-lib.org/reference/comparison-expectations.html
https://testthat.r-lib.org/reference/expect_named.html
https://testthat.r-lib.org/reference/expect_setequal.html
https://testthat.r-lib.org/reference/expect_setequal.html
https://testthat.r-lib.org/reference/logical-expectations.html
https://testthat.r-lib.org/reference/logical-expectations.html
https://testthat.r-lib.org/reference/expect_vector.html
https://testthat.r-lib.org/reference/expect_error.html
https://testthat.r-lib.org/reference/expect_error.html
https://testthat.r-lib.org/reference/expect_error.html
https://testthat.r-lib.org/reference/expect_error.html

Functions for running tests

Run tests

auto_test()
Watches code and tests for changes, rerunning tests
as appropriate.

auto_test_package()
Watches a package for changes, rerunning tests as
appropriate.

describe() describe: a BDD testing language

test_file() Run all tests in a single file

test_package() test_check() test_local() Run all tests in a package

test_path() Locate file in testing directory.

test_that() Run a test

use_catch() Use Catch for C++ Unit Testing

https://testthat.r-lib.org/reference/auto_test.html
https://testthat.r-lib.org/reference/auto_test_package.html
https://testthat.r-lib.org/reference/describe.html
https://testthat.r-lib.org/reference/test_file.html
https://testthat.r-lib.org/reference/test_package.html
https://testthat.r-lib.org/reference/test_package.html
https://testthat.r-lib.org/reference/test_package.html
https://testthat.r-lib.org/reference/test_path.html
https://testthat.r-lib.org/reference/test_that.html
https://testthat.r-lib.org/reference/use_catch.html

Summary

• You don’t need to be building an R package to formally test your code

• You can write as many or as few tests as you like

• You can run them whenever you like

• You can automate all this using testthat, devtools, usethis
• This will make it easier than I have shown but it’s good to understand the fundamentals I think!
• I often make plots in my test files too but would comment these out for packaging

• There are a lot of online resources – google: ‘unit tests R’, ‘testthat’, ‘creating packages in R’ etc.

• Caveat – I am not an expert (just a self-taught hacker!) – ask David and Bram for better info!

• Happy testing!

